PIPE DAMAGE IMPACTED STRESS CALCULATION

1. CALCULATION PURPOSE

This calculation was prepared to find that how to impact damaged pipe with physical material when it dropped in gravity speed from assumed distance.

The calculation method complied with engineering practice and general theory.
Especially, this calculation was performed based on destruction theory of deformation energy.

2. DESIGN CONDITION

2-1 Design reference
JIS, ASTM, ASD
2-2 Applied Load

1) Pipe weight, W
387.2 Kgf for 12 " Sch. $10 \mathrm{~S}-11 \mathrm{~m}$ ($35.2 \mathrm{Kg} / \mathrm{m}, ~ 4.5 \mathrm{~T}$ for S.S Pipe)

2-3 Material

1) Material A312-TP304
2) Modulus of Elasticity, E
$1,989,688.0 \mathrm{~kg} / \mathrm{cm}^{\wedge} 2$
3) Yield strength,Ys
4) Allowable tensile stress, Sat
$1757.7 \mathrm{~kg} / \mathrm{cm}^{\wedge} 2$
5) Allowable stress for bending, $\mathrm{Sb}=0.66 *$ Sat
$1174.1 \mathrm{~kg} / \mathrm{cm}^{\wedge} 2$
6) Shape profile calculation
b
$774.9 \mathrm{~kg} / \mathrm{cm}^{\wedge} 2$
15.0 cm
h
** y, Distance from neutral axis to extreme fiber, $\mathrm{T} / 2$
** I, Moment of inertia, $\mathrm{bh}^{\wedge} 3 / 12$
** Z, Section modulus, $\mathrm{bh}^{\wedge} 2 / 6$
0.45 cm
0.23 cm
$0.11 \mathrm{~cm}^{\wedge} 4$
$0.51 \mathrm{~cm}^{\wedge} 3$

IMPACT CONFIGURATION OF PIPE DEFORMATION ENERGY

3. DEFORMATION ENERGY CALCULATION

1) Pipe location Energy $=W(h+\delta)$
2) Absorber engrgy in Pipe $=\left(\sigma^{\wedge} 2^{*} A^{*} \ell\right) / 2^{\star} E$

Pipe location energy is equal to pipe absorber energy
ie, $W(h+\delta)=\left(\sigma^{\wedge} 2^{*} A^{*} \ell\right) / 2^{*} E$
$\delta=W * l / A^{*} E=\sigma^{*} l / E$
$A^{*} \ell / 2 E / \sigma^{\wedge} 2-W^{*} \ell^{\star} \sigma / E-W * h=0$
$\sigma^{\wedge} 2-2 W * \sigma / A-2 * E * W * h / A * \ell=0$

Therefore,
Impact stress in Pipe will be calculated as follows.
$\sigma=W / A+-\left((W / A) \wedge 2+\left(2^{*} E^{*} W * h / A * \ell\right)\right)^{\wedge} 0.5$

3-1 Damaged area in Pipe (OD 15cm, Circular type)

1) Area, A
$176.7 \mathrm{~cm}^{\wedge} 2$
2) Pipe weight, W
387.2 Kgf
3) $\ell=$ Thickness
0.45 cm
4) Gravity dropping height, h
17.69 cm
5) Impacted stress, σ
4. Assumed gravity dropping height, H

1) Yield strength of material,Ys
2) Modulus of Elasticity, E
3) Applied unsupported length, L
$1757.7 \mathrm{kgf} / \mathrm{cm}^{\wedge} 2$
$1,989,688.0 \mathrm{~kg} / \mathrm{cm}^{\wedge} 2$
15 cm
2500.0 Kgf
$9375 \mathrm{kgf}-\mathrm{cm}$
$0.51 \mathrm{~cm}^{\wedge} 3$
18,519
$\mathrm{~kg} / \mathrm{cm}^{\wedge} 2$
0.78 cm
$3.75 \mathrm{~cm}^{\wedge} 3$
7.4 times
5. CALCULATION RESULT

We may assumed that this pipe dropped at 176.9 mm height in a gravity acceleration
And impacted with rigidity physical material like as steel structure at ground floor.

30th Dec. 2013
Prepared By Ryu-ChangMyong/
Professional Engineer in Mechanical
http://www.pes21.com
wine@pes21.com

